
Solid mechanics ME-331 / 4 credits: topics and timing (estimated): Prof. John Botsis

Index Notation and Cartesian Tensors (Support Material 1) **(week 1)**

Kinematics (Support Material 1) **(week 2)**

- Deformation Gradient and Strain Tensors
- Linearized strains
- Transformation of strains
- Objectivity

Dynamics (Support Material 1) **(week 3)**

- Stress Tensors, Linearization
- Transformation of stresses, Stress invariants
- Stress Deviator, Octahedral stress

Energetics (Support Material 1, 2) **(week 4)**

- Thermodynamics
- Potential Energy, Strain energy
- Work and energy in solid mechanics
- Virtual Work principle

Isotropic elasticity (Support Material 1, 2) **(weeks 5-9)**

- Problem definition and equations in Linear elasticity
- Navier equations; Beltrami-Michell equations
- Superposition, St. Venant's principle
- Boundary value problem, Uniqueness of the solution
- Plane strain, Plane stress
- Solution Methods*
- Potentials (Sphere and Hollow cylinder, Kelvin problem ...)
- Stress functions in plane problems (beams, Stress concentrations)
- Axisymmetric problems (cylinder, disc, ...)
- Virtual work and Energy

Anisotropic elasticity (Support Material 1, 2) **(week 10)**

- Definitions
- Applications to composite materials

Introduction to Non-Linear Elasticity (Support Material 1) **(week 11)**

- Hyperelastic materials, theory and 2D problems

Introduction to Linear Viscoelasticity (Support Material 2) **(week 12)**

Introduction to Plasticity Theory (Support Material 2) **(week 13)**

Support Material

1. Mechanics of Continuous Media: an Introduction (J Botsis and M Deville, PPUR)
2. Course/Class notes given during the course (J Botsis)
3. Applied Mechanics of Solids (A Bower CRC Press)
